Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 172: 116204, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364733

RESUMEN

HACE1 is a member of the HECT domain-containing E3 ligases with 909 amino acid residues, containing N-terminal ankyrin-repeats (ANK) and C-terminal HECT domain. Previously, it was shown that HACE1 is inactive in human tumors and plays a crucial role in the initiation, progression, and invasion of malignant tumors. Recent studies indicated that HACE1 might be closely involved in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. HACE1 interacts with its substrates, including Ras-related C3 botulinum toxin substrate 1 (Rac1), nuclear factor erythroid 2-related factor 2 (Nrf2), tumor necrosis factor receptor (TNFR), and optineurin (OPTN), through which participates in several pathophysiological processes, such as oxidative stress, autophagy and inflammation. Therefore, in this review, we elaborately describe the essential substrates of HACE1 and illuminate the pathophysiological processes by which HACE1 is involved in neurodegenerative diseases. We provide a new molecular target for neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Ubiquitina-Proteína Ligasas , Humanos , Enfermedad de Alzheimer , Aminoácidos , Enfermedad de Huntington , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedad de Parkinson , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores
2.
J Asian Nat Prod Res ; 26(1): 146-153, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38419338

RESUMEN

White matter lesions (WMLs), characterized by focal demyelination or myelination disorders, are commonly present in cerebral small vessel disease and various neurological diseases. Multiple etiologies lead to WMLs. However, there is no specific therapy or effective drugs for relieving WMLs. Natural products and their derivatives originate from bacterial, fungal, plant, and marine animal sources, many of which have multiple therapeutic targets. Compared to single target compounds, natural products and their derivatives are promising to be developed as better drugs to attenuate WMLs. Thus, this review attempts to summarize the status of natural products and their derivatives (2010-to date) alleviating cerebral white matter lesions for the discovery of new drugs.


Asunto(s)
Productos Biológicos , Sustancia Blanca , Animales , Sustancia Blanca/patología , Productos Biológicos/farmacología
3.
Food Funct ; 15(2): 1052, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38205631

RESUMEN

Correction for 'Gardenia jasminoides J. Ellis extract alleviated white matter damage through promoting the differentiation of oligodendrocyte precursor cells via suppressing neuroinflammation' by Caixia Zang et al., Food Funct., 2022, 13, 2131-2141, https://doi.org/10.1039/D1FO02127C.

4.
J Ethnopharmacol ; 310: 116292, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-36931412

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Yinma Jiedu Granule (YMJD) is a traditional Chinese patent medicine (CPM), which has been proved to have anti-inflammatory effects and therapeutical effects on obstructive pulmonary disease. AIM OF STUDY: The purpose of the current investigation is to find out if YMJD can alleviate acute lung injury (ALI) induced by lipopolysaccharide (LPS) in rats and its underlying mechanisms. MATERIALS AND METHODS: Rats were treated with either vehicle or YMJD for 14 consecutive days, and 2 h after the last administration, the rat model of ALI was induced by the intratracheal instillation of LPS. High performance liquid chromatography (HPLC) was applied for the fingerprint analysis of YMJD. The efficacy and molecular mechanisms were investigated. RESULTS: The results showed that treatment with YMJD improved the general state of rats, reduced weight loss and serum lactate (LA) levels, attenuated pulmonary edema and pathological damage of the lung tissue. Moreover, we found that YMJD effectively decreased the infiltration of white blood cells (WBC), lymphocytes (LYM), mononuclear cells (MON) and neutrophils (NEUT) in bronchoalveolar lavage fluid (BALF), reduced the concentration of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) and inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in the lung tissue. Additionally, we found that YMJD could significantly increase the activity of superoxide dismutase (SOD) and reduce the malondialdehyde (MDA) level in the lung tissue. By employing RNA-sequencing, we have identified that JAK2/STAT1 is an important pathway that is involved in the lung protection of YMJD, and further Western blot assay verified that YMJD could effectively inhibit the activation of the JAK2/STAT1 pathway. CONCLUSIONS: YMJD could attenuate LPS-induced ALI through suppressing inflammation and oxidative stress in the lung tissue of rats, associating with the inhibition of JAK2/STAT1 activation. These findings provide evidence for the clinical use of YMJD for treatment of inflammatory pulmonary diseases like ALI.


Asunto(s)
Lesión Pulmonar Aguda , Edema Pulmonar , Ratas , Animales , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Pulmón , Inflamación/patología , Edema Pulmonar/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Neurobiol Dis ; 177: 105988, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603746

RESUMEN

CXC chemokine receptor 2 (CXCR2) plays an important role in demyelinating diseases, but the detailed mechanisms were not yet clarified. In the present study, we mainly investigated the critical function and the potential molecular mechanisms of CXCR2 on oligodendrocyte precursor cell (OPC) differentiation and remyelination. The present study demonstrated that inhibiting CXCR2 significantly enhanced OPC differentiation and remyelination in primary cultured OPCs and ethidium bromide (EB)-intoxicated rats by facilitating the formation of myelin proteins, including PDGFRα, MBP, MAG, MOG, and Caspr. Further investigation identified phosphodiesterase 10A (PDE10A) as a main downstream protein of CXCR2, interacting with the receptor to regulate OPC differentiation, in that inhibition of CXCR2 reduced PDE10A expression while suppression of PDE10A did not affect CXCR2. Furthermore, inhibition of PDE10A promoted OPC differentiation, whereas overexpression of PDE10A down-regulated OPC differentiation. Our data also revealed that inhibition of CXCR2/PDE10A activated the cAMP/ERK1/2 signaling pathway, and up-regulated the expression of key transcription factors, including SOX10, OLIG2, MYRF, and ZFP24, that ultimately promoted remyelination and myelin protein biosynthesis. In conclusion, our findings suggested that inhibition of CXCR2 promoted OPC differentiation and enhanced remyelination by regulating PDE10A/cAMP/ERK1/2 signaling pathway. The present data also highlighted that CXCR2 may serve as a potential target for the treatment of demyelination diseases.


Asunto(s)
Enfermedades Desmielinizantes , Remielinización , Ratas , Animales , Ratones , Remielinización/fisiología , Receptores de Interleucina-8B/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/metabolismo , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Transducción de Señal , Diferenciación Celular/fisiología , Ratones Endogámicos C57BL , Hidrolasas Diéster Fosfóricas/metabolismo
6.
Am J Chin Med ; 51(1): 53-72, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36458485

RESUMEN

Endoplasmic reticulum stress (ERS) is involved in the pathological process of vascular dementia (VD). GJ-4 is extracted from Gardenia jasminoides J. Ellis and has been reported to have protective roles in ischemia-related brain damage. However, the role of GJ-4 in ERS has not been elucidated. We established a VD rat model through bilateral common carotid arteries occlusion (2-VO). The rats were intragastrically administrated with GJ-4 (10, 25, and 50[Formula: see text]mg/kg) and nimodipine (10[Formula: see text]mg/kg). Data from a Morris water maze test showed that GJ-4 could significantly alleviate learning and memory deficits in VD rats. Nissl and cleaved caspase-3 staining revealed that GJ-4 can inhibit apoptosis and thus exert a protective role in the brain of 2-VO rats. Western blot results suggested that GJ-4 significantly reduced ERS-related protein expression and inhibited apoptosis through suppression of the PERK/eIF2[Formula: see text]/ATF4/CHOP signaling pathway. For in vitro studies, the oxygen-glucose deprivation (OGD) SH-SY5Y model was employed. Western blot and Hoechst 33342/PI double staining were utilized to explore the effects of crocetin, the main active metabolite of GJ-4. Like GJ-4 in vivo, crocetin in vitro also decreased ERS-related protein expression and inhibited the activation of the PERK/eIF2[Formula: see text]/ATF4/CHOP signaling pathway. Thus, crocetin exerted similar protective roles on OGD challenged SH-SY5Y cells in vitro. In summary, GJ-4 and crocetin reduce the ERS in the brain of VD rats and SY5Y cells subjected to OGD and inhibit neuronal apoptosis through suppression of the PERK/eIF2[Formula: see text]/ATF4/CHOP pathway, suggesting that GJ-4 may be useful for the treatment of VD.


Asunto(s)
Demencia Vascular , Gardenia , Neuroblastoma , Ratas , Humanos , Animales , Demencia Vascular/tratamiento farmacológico , Demencia Vascular/etiología , Factor 2 Eucariótico de Iniciación/farmacología , Apoptosis , Estrés del Retículo Endoplásmico
7.
Bioorg Chem ; 129: 106179, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36244322

RESUMEN

A series of novel pyranocarbazole alkaloids were designed and synthesized as derivatives of Claulansine F and CZ-7. Some of the compounds showed strong neuroprotective effects and anti-lipid peroxidation capacity. Among these compounds, 10b, introduced leucine at the C-3 position of pyranocarbazole, was the most active in inhibiting the programmed death of SH-SY5Y cells. This compound exhibited stronger free radical scavenging activity than Edaravone. Furthermore, 10b could penetrate the blood-brain barrier (BBB). More importantly, 10b showed a tendency of improvement in learning and memory in the dose range of 10-40 mg/kg. The research on mechanisms indicated that 10b could reduce oxidative stress in the brain of Aß25-35-intoxicated mice, and then improve the cognitive function of Aß25-35-intoxicated mice. Our findings suggest that 10b may be promising for further evaluation as an intervention for Alzheimer's Disease.


Asunto(s)
Enfermedad de Alzheimer , Antioxidantes , Cognición , Diseño de Fármacos , Fármacos Neuroprotectores , Animales , Humanos , Ratones , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides , Antioxidantes/síntesis química , Antioxidantes/química , Antioxidantes/farmacología , Cognición/efectos de los fármacos , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Línea Celular Tumoral , Estrés Oxidativo/efectos de los fármacos
8.
Inflammation ; 45(6): 2375-2387, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35917097

RESUMEN

Dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) is a highly conserved protein kinase, playing a key role in the regulation of physiological brain functions and pathological processes. In Alzheimer's disease (AD), Dyrk1A promotes hyperphosphorylation of tau protein and abnormal aggregation of amyloid-ß protein (Aß). This study investigated the role of Dyrk1A in regulating neuroinflammation, another critical factor that contributes to AD. In the present study, we used an immortalized murine BV2 microglia cell line induced by lipopolysaccharide (LPS) to study neuroinflammation. The expression and activity of Dyrk1A kinase were both increased by inflammation. Dyrk1A inhibition using harmine or siRNA silencing significantly reduced the production of proinflammatory factors in LPS-stimulated BV2 cells. Reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and nitric oxide (NO), as well as the expression of the inflammatory proteins, cyclooxygenase 2 (COX2), and inducible nitric synthase (iNOS), were attenuated. In vivo, in ICR mice injected with LPS into the left lateral cerebral ventricle, harmine (20 mg/kg) administration decreased the expression of inflammatory proteins in the cortex and hippocampus of mice brain. In addition, immunohistochemical detection of ionized calcium-binding adapter molecule 1 (Iba1) and Nissl staining showed that harmine significantly attenuated microglia activation and neuronal damage in the CA1 region of hippocampus. Further mechanistic studies indicated that Dyrk1A suppression may be related to inhibition of the TLR4/NF-κB signaling pathway in LPS-induced neuroinflammation. Taken together, our studies suggest that Dyrk1A may be a novel target for the treatment of neurodegenerative diseases with an inflammatory component.


Asunto(s)
Enfermedades Neuroinflamatorias , Proteínas Serina-Treonina Quinasas , Animales , Ratones , Harmina , Lipopolisacáridos , Ratones Endogámicos ICR , Microglía/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Quinasas DyrK
9.
Food Funct ; 13(4): 2131-2141, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35112688

RESUMEN

Increasing evidence has highlighted the role of white matter damage in the pathology of Alzheimer's disease (AD). Previous research has shown that a mixture of crocin analogues (GJ-4), Gardenia jasminoides J. Ellis extract, improved cognition in several AD mouse models, but the mechanism remains unclear. The aim of the present study was to investigate the effects and underlying mechanisms of GJ-4 on white matter damage. Proteomic analysis and western blotting results suggested that the level of myelin-related proteins, including myelin basic protein (MBP), myelin associated glycoprotein (MAG) and myelin associated oligodendrocyte basic protein (MOBP), was significantly decreased in the brain of PrP-hAßPPswe/PS1ΔE9 (APP/PS1) transgenic mice, and GJ-4 treatment increased the expressions of these proteins. This result revealed that GJ-4 could ameliorate myelin injury, suggesting that this might be a possible mechanism of GJ-4 on cognition. To validate the effects of GJ-4 on myelin, a metabolite of GJ-4, crocetin, which can pass through the blood-brain barrier, was applied in in vitro experiments. A mechanistic study revealed that crocetin significantly promoted the differentiation of primary cultured oligodendrocyte precursor cells to oligodendrocytes through up-regulation of nuclear Ki67 and transcription factor 2 (Olig2). Oligodendrocytes, the myelin-forming cells, have been reported to be lifelong partners of neurons. Therefore, to investigate the effects of crocetin on myelin and neurons, lysophosphatidylcholine (LPC)-treated primary mixed midbrain neuronal/glial culture was used. Immunofluorescence results indicated that crocetin treatment protected neurons and suppressed microglial activation against LPC-induced injury. To further discern the effects of GJ-4 on white matter injury and neuroinflammation, an LPC-induced mouse model was developed. GJ-4 administration increased oligodendrocyte proliferation, differentiation, and myelin repair. The mechanistic study indicated that GJ-4 improved white matter injury through the regulation of neuroinflammatory dysfunction. These data indicated that GJ-4 effectively repaired white matter damage in the LPC-treated mice. Thus, the present study supported GJ-4 as a potential therapeutic agent for AD and white matter related diseases.


Asunto(s)
Gardenia , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Enfermedad de Alzheimer/prevención & control , Animales , Modelos Animales de Enfermedad , Humanos , Lisofosfatidilcolinas , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Proteína Básica de Mielina/metabolismo , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/prevención & control , Fármacos Neuroprotectores/uso terapéutico , Oligodendroglía/efectos de los fármacos , Fitoterapia , Extractos Vegetales/uso terapéutico , Proteómica , Sustancia Blanca/efectos de los fármacos
10.
Biochem Pharmacol ; 197: 114891, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34968482

RESUMEN

Mitochondria are the principal sites of energy metabolism and provide most of the energy needed for normal cellular function. They are dynamic organelles that constantly undergo fission, fusion and mitophagy to maintain their homeostasis and function. However, dysregulated mitochondrial dynamics and mitophagy leads to reduced ATP generation and mutation of their DNA, which ultimately leads to cell death. Increasing evidence has shown that the FUN14 domain-containing protein 1 (FUNDC1), a novel mitophagy receptor, participates in the process of mitochondrial dynamics and mitophagy and plays a critical role in various human diseases. Herein, we review the role of FUNDC1 in mitophagy and mitochondrial dynamics, thus providing a better understanding of the relationship between the two processes. Moreover, we summarize the treatments targeting FUNDC1, and suggest that FUNDC1 may represent a promising therapeutic target for the treatment of several human diseases such as cardiovascular diseases, metabolic syndrome, cancer and chronic obstructive pulmonary disease (COPD).


Asunto(s)
Proteínas de la Membrana/fisiología , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/fisiología , Mitofagia/fisiología , Animales , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patología , Humanos , Proteínas de la Membrana/química , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/química , Neoplasias/metabolismo , Neoplasias/patología
11.
Microbiome ; 9(1): 226, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34784980

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a prevalent neurodegenerative disorder, displaying not only well-known motor deficits but also gastrointestinal dysfunctions. Consistently, it has been increasingly evident that gut microbiota affects the communication between the gut and the brain in PD pathogenesis, known as the microbiota-gut-brain axis. As an approach to re-establishing a normal microbiota community, fecal microbiota transplantation (FMT) has exerted beneficial effects on PD in recent studies. Here, in this study, we established a chronic rotenone-induced PD mouse model to evaluate the protective effects of FMT treatment on PD and to explore the underlying mechanisms, which also proves the involvement of gut microbiota dysbiosis in PD pathogenesis via the microbiota-gut-brain axis. RESULTS: We demonstrated that gut microbiota dysbiosis induced by rotenone administration caused gastrointestinal function impairment and poor behavioral performances in the PD mice. Moreover, 16S RNA sequencing identified the increase of bacterial genera Akkermansia and Desulfovibrio in fecal samples of rotenone-induced mice. By contrast, FMT treatment remarkably restored the gut microbial community, thus ameliorating the gastrointestinal dysfunctions and the motor deficits of the PD mice. Further experiments revealed that FMT administration alleviated intestinal inflammation and barrier destruction, thus reducing the levels of systemic inflammation. Subsequently, FMT treatment attenuated blood-brain barrier (BBB) impairment and suppressed neuroinflammation in the substantia nigra (SN), which further decreased the damage of dopaminergic neurons. Additional mechanistic investigation discovered that FMT treatment reduced lipopolysaccharide (LPS) levels in the colon, the serum, and the SN, thereafter suppressing the TLR4/MyD88/NF-κB signaling pathway and its downstream pro-inflammatory products both in the SN and the colon. CONCLUSIONS: Our current study demonstrates that FMT treatment can correct the gut microbiota dysbiosis and ameliorate the rotenone-induced PD mouse model, in which suppression of the inflammation mediated by the LPS-TLR4 signaling pathway both in the gut and the brain possibly plays a significant role. Further, we prove that rotenone-induced microbiota dysbiosis is involved in the genesis of PD via the microbiota-gut-brain axis. Video abstract.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Animales , Eje Cerebro-Intestino , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiología , Inflamación/inducido químicamente , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/terapia , Rotenona/toxicidad , Transducción de Señal , Receptor Toll-Like 4
12.
Acta Pharm Sin B ; 11(9): 2859-2879, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34589401

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease, but none of the current treatments for PD can halt the progress of the disease due to the limited understanding of the pathogenesis. In PD development, the communication between the brain and the gastrointestinal system influenced by gut microbiota is known as microbiota-gut-brain axis. However, the explicit mechanisms of microbiota dysbiosis in PD development have not been well elucidated yet. FLZ, a novel squamosamide derivative, has been proved to be effective in many PD models and is undergoing the phase I clinical trial to treat PD in China. Moreover, our previous pharmacokinetic study revealed that gut microbiota could regulate the absorption of FLZ in vivo. The aims of our study were to assess the protective effects of FLZ treatment on PD and to further explore the underlying microbiota-related mechanisms of PD by using FLZ as a tool. In the current study, chronic oral administration of rotenone was utilized to induce a mouse model to mimic the pathological process of PD. Here we revealed that FLZ treatment alleviated gastrointestinal dysfunctions, motor symptoms, and dopaminergic neuron death in rotenone-challenged mice. 16S rRNA sequencing found that PD-related microbiota alterations induced by rotenone were reversed by FLZ treatment. Remarkably, FLZ administration attenuated intestinal inflammation and gut barrier destruction, which subsequently inhibited systemic inflammation. Eventually, FLZ treatment restored blood-brain barrier structure and suppressed neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra (SN). Further mechanistic research demonstrated that FLZ treatment suppressed the TLR4/MyD88/NF-κB pathway both in the SN and colon. Collectively, FLZ treatment ameliorates microbiota dysbiosis to protect the PD model via inhibiting TLR4 pathway, which contributes to one of the underlying mechanisms beneath its neuroprotective effects. Our research also supports the importance of microbiota-gut-brain axis in PD pathogenesis, suggesting its potential role as a novel therapeutic target for PD treatment.

13.
Cancer Immunol Immunother ; 70(6): 1527-1540, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33200250

RESUMEN

OBJECTIVE: To summarize the clinical characteristics and immunological and genetic features of patients who developed autoimmune polyendocrine syndrome type II (APS-2) after treatment with immune checkpoint inhibitors (ICIs). DESIGN AND METHODS: Several databases (MEDLINE/EMBASE/Cochrane) were searched for studies published between January 2000 and February 2020 involving patients with two or more endocrine disorders after ICI therapy. RESULTS: Our final review included 22 articles comprising 23 patients (median age 56 years; 65.2% male patients). Of these patients, 60.9% received anti-programmed cell death 1 (PD-1) therapy, 17.4% received anti-programmed cell death ligand 1 (PD-L1) therapy, and 4.3% received anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4) monotherapy. Patients underwent a median of four treatment cycles before the onset of the primary adverse event; the median time of onset was 8.5 weeks. Endocrine organs affected by ICI administration included the thyroid gland (18/23, 78.3%), pancreatic islets (17/23, 73.9%), pituitary gland (11/23, 47.8%), and adrenal gland (2/23, 8.7%). Related autoantibodies were detected in 65.2% of patients. In patients with diabetes, glutamic acid decarboxylase antibody was closely related to the development of diabetes ketoacidosis. The human leukocyte antigen genotype was reported in 34.8% (8/23) of patients, 5 (62.5%) of which had risk genotypes. CONCLUSIONS: As a serious adverse event of ICI treatment, APS-2 is presented with abrupt initiation time and rapid development. Physicians should be aware of potential endocrine disorders and continue monitoring hormone status when treating cancer patients with ICIs.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias/tratamiento farmacológico , Poliendocrinopatías Autoinmunes/patología , Humanos , Neoplasias/patología , Poliendocrinopatías Autoinmunes/inducido químicamente , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...